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Studies requiring ambient exposure assessments invariably ask: How often should measurements be taken?
Answer to such questions is dictated by budgetary considerations as well as spatial and temporal variability
in the data. For example, do we obtain measurements during all seasons, all months within seasons, weeks
within months and days within weeks? On one hand, we can obtain a one-time snapshot sample and regard
it as representing the ‘‘true’’ mean exposure. On the other hand, we may obtain a large number of
measurements over time and then average these in order to represent this ‘‘true’’ mean exposure. The former
estimate is the least expensive but may also be the least precise while the latter, may be very precise but
prohibitively costly. In this paper, we demonstrate how a pilot study can be undertaken with a potentially
promising and feasible sampling plan for the full-scale study. By applying the statistical methodology of
variance component analysis (VCA) to the pilot study data and exploiting mathematical relationship between
the variance of the overall mean exposure and posited variance components, we can develop a sampling
design with decreased sampling costs and/or increased precision of the mean exposure. Our approach was
applied to determine sampling design choices for an on-going study that aimed at assessing ambient
particulate matter exposure. We conclude that a pilot study followed by the VCA analysis may often lead to
sampling design choices that offer considerable cost savings and, at the same time, promise to provide
relatively precise estimates of the mean exposure for the subsequent full-scale study.

1. Introduction

Many researchers worldwide are addressing issues related to
the ambient environmental exposure and its impact on health
of those exposed. Before we can credibly ascertain the health
effects of such exposures, it is imperative that we assess the
exposures as precisely and accurately as possible. There are
WHO guidelines for exposure assessment of fine and ultra fine
particulate matter (PM) in epidemiological studies.1 Fre-
quently asked questions on environmental sampling and ana-
lysis involve the type and number of samples needed.2 A
question not given adequate attention is, ‘‘How to allocate
these temporally?’’ Bernard3 alluded to partitioning of the total
sample variance in terms of its relevant components and
concluded that a well-conceived and cost-effective sampling
program must be based on an appropriate statistical design
that considers all of the components of variance. Allen4

employed multistage cluster sampling design to estimate var-
iance components in a survey of the fish discards with hauls
within trips within vessels, and investigated the optimal num-
ber of hauls, trips and vessels that will be required to be
sampled to achieve certain levels of precision. In another
study5 comparing two environmental monitoring programs
with respect to the cost-effectiveness, temporal variance com-
ponents were estimated using time series approach. Efficient
sampling designs were also investigated in fisheries6 in order to
reduce sampling frequency without any loss of precision. All
these studies investigated achieving efficient sampling design
but not quite with respect to sampling in time. In an attempt to
address the issue of allocating sample assessments in time, we

previously developed an approach for examining the health
effects of workers exposed to solvents.7 A feasible solution was
to select a reasonable number of total exposure measures and
plan how the entire sampling scheme was configured. It was
recommended to perform a pilot study first and then use
variance component analysis on the results to establish a link
between the average exposure assessment and various posited
sources of variations. This link allows manipulation and
redistribution of exposure assessments permitting an evalua-
tion of alternate sampling designs relative to the pilot design
with respect to the cost of sampling (in terms of the number of
samples) and precision in determining the average exposure (in
terms of the inverse of the standard error of the mean). Designs
of a pilot study can be identified with decreased sampling costs
and/or increased precision of the mean level of exposure,
depending on the requirements of the full-scale study. In this
paper, we have refined the previous application;7 the ambient
particulate matter (PM) monitoring problem is approached
from the viewpoint of sampling theory developed for environ-
mental survey applications.8,9 In particular, we invoke the
theory of sub-sampling with each ‘‘day’’ of PM sampling
considered as the basic unit or element. The entire sampling
duration is viewed as a composite of several ‘‘nested’’ stages of
clusters of days (such as weeks, months, seasons, etc.). With the
proposed multi-stage sub-sampling view of the entire duration
of sampling, we provide expressions for estimating precision
(inverse of the standard error) of the mean exposure in terms of
the variance components that account for the finite population
correction (FPC) as well. In the previous application, we
effectively assumed the population of clusters (weeks, months,
periods etc.) to be ‘‘very large’’, and thus ignored the FPC. In
this paper, with a more realistic scenario and exact expressions
for variance, considerable enhancement is afforded, thereby

w On leave from Kaunas University of Technology, Department for
Environmental Engineering, Kaunas, Lithuania.

P A P E R

w
w

w
.rsc.o

rg
/jem

D
O

I:
1

0
.1

0
3

9
/b

5
0

0
5

2
5

f

J . E n v i r o n . M o n i t . , 2 0 0 5 , 7 , 6 0 3 – 6 0 7 6 0 3T h i s j o u r n a l i s & T h e R o y a l S o c i e t y o f C h e m i s t r y 2 0 0 5



leading to credible design choices. We have applied this
modified approach to the on-going Cincinnati Childhood
Allergy and Air Pollution Study (CCAAPS).

2. Methods

2.1 Ambient PM monitoring study

CCAAPS examines the relationship of exposure to diesel
exhaust particles and the development of allergy in infants
and young children. Newborns are identified from birth certi-
ficate records. Their residential address is used in combination
with a geographic information system (GIS) to identify infants
residing within either 400 m or beyond 1500 m from a major
roadway. Major roadways are defined as those having a daily
traffic intensity of 1000 or more heavy-duty diesel vehicles. The
children are tested with skin prick tests annually for the
development of atopy. The ultimate goal of the CCAAPS,
however, is to have more precise measures of exposure than the
distance from the highways and traffic intensity. The study
protocol called for setting up several air monitoring stations
throughout the Greater Cincinnati area. There was no unani-
mity as to the most precise and cost-effective approach to
capture ‘‘true’’ exposure while not exceeding budgetary re-
sources. The sampling scheme had large implications as it was
to last for five years.

The pilot study included several sites selected for exposure
assessment. Both the ambient PM2.5 aerosol (particulate mat-
ter with an aerodynamic diameter of up to 2.5 mm) and the
PM2.5 chemical compositions were monitored at each site with
repeated aerosol sampling over time. Sampling and analysis
methods are described in detail elsewhere.10 Among 39 ele-
ments identified in the CCAAPS by the X-Ray fluorescence
analysis of PM2.5 samples, few elements are selected here for
presentation purposes, including S (as an indicator of the
secondary sulfate source, coal combustion and diesel sources),
as well as Fe, Pb, and Zn (as elements associated with
industrial processes and motor vehicle traffic). Data collected
from a representative site located in the center of the Greater
Cincinnati area (Water Tower) are used here to illustrate our
approach. Fig. 1 shows the pilot sampling design for that site.
The sampling period consisted of phases (cycles or periods) of
sampling. Each phase consisted of a certain number of weeks
of sampling. (For example, period 1 had one week of sampling,
period 2 had two weeks of sampling, and period 3 had three
weeks). Likewise, each monitoring week consisted of three to
five days of sampling.

Any sampling procedure typically presupposes a clear divi-
sion of the population of samples (be it spatial or temporal)
into a finite number of distinct and identifiable units called the
sampling units. The smallest units into which the sampled
population can be divided are called the elements of the
population, and groups of elements as the strata. When all
the elements within a stratum are sampled, the procedure of
sampling is called cluster sampling. Thus, in the present set up,
one can view a day of exposure assessment as the element of the
population and week, month, season, period or phase as
different strata. Consequently, an industrial hygiene sampling
protocol over time can be described in a nested data structure,

and the sampling can take place in several stages, depending
upon the levels of strata/clusters. Note that this structure can
have many variants depending on the nature of sampling and
the total sampling duration. The objective in characterizing the
entire sampling duration into a number of clusters or strata (or
components) is to identify ‘‘sources of variation’’ in the
exposure assessments. For example, how much of the total
variation in the data is due to a day-to-day variation, week-to-
week, or month-to-month variation, and so on. Once these
components of variance are estimated via a pilot study, we can
redistribute the number of observations to reduce the cost and
maximize the precision of our estimated mean. In the study, we
have presented the necessary statistical and modeling details of
the approach and applied these to one site as an example.

2.2 Statistical modeling and analysis

When a design strategy involves a random selection of days,
weeks, and other periods within a nested data structure, an
appropriate statistical model for describing exposure measure-
ment X is the random effects model.11

For a given site, we have modeled the exposure measurement
following the random effects model as described below:

Yijkl ¼ log(Xijkl) ¼ m þ ai þ bj(i) þ gk(ij) þ e(ijk) (1)

where Xijkl is the exposure concentration of the outcomes in
consideration (in our example; PM2.5, Fe, Pb, S, and Zn), m is
the overall mean ai is the period effect, (i: 1,. . .,p) bj(i) is the
week effect (nested in period), (j: 1,. . .,w) gk(ij) is the day effect
(nested in week), (k: 1,. . .,d) and el(ijk) is the Residual compo-
nent.
It is usually assumed that Xijkl has a log–normal distribution.

Further, ai, bj(i), gk(ij), and el(ijk) are assumed to be normally
distributed with 0 means and variances s2a, s2b, s2g, and s2e ,
respectively.
Note that since there is one measurement per day, the day

effect is confounded with the error term. Variance component
analysis can be performed using any standard statistical soft-
ware (e.g. SAS), and using the restricted maximum likelihood
method to estimate the variance components of period, week,
and day. One can then employ the relationship between the
variance of the overall mean and the estimates of the variance
components8 as follows:

VarðyÞ ¼ 1

p
� 1

P

� �
s2p þ

1

p

1

w
� 1

W

� �
s2w þ

1

pw

1

d
� 1

D

� �
s2d ð2Þ

where s2( � ) is the estimate of respective variance components;
p, w, and, d are respectively the number of periods, weeks
within period, and days within weeks, in any proposed sam-
pling design; P, W, and D are the corresponding number of
periods, weeks, and days in the entire sampling frame. For
example, in our study, we have a year of sampling, and the
period is close to a month so P ¼ 12, W ¼ 4, D ¼ 7.

2.3 Measures of ‘‘cost’’, ‘‘precision’’ and ‘‘design efficiency’’

The precision can obviously be improved by increasing the
total number of measurements. Even with a fixed number of
total measurements, different combinations of the numbers of
periods, weeks, and days for a sampling design (i.e.; p–w–d),
may give different variances of the estimated mean exposure in
eqn. (2). Precision in our estimate of the overall exposure mean
is defined as the inverse of the standard error of the overall
mean. The cost is defined herein as being directly proportional
to the total number of measurements (n ¼ pwd). The goal is to
find a design, which maximizes the precision for a pre-specified
cost (n) or minimizes the cost for a pre-specified precision. The
estimated variance components, the overall mean exposure and
the standard error (se) of the overall mean, are obtained fromFig. 1 Pilot sampling design.
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the pilot study. In other words, the results of the pilot design
become the ‘‘point of reference’’. The performance of other
possible environmental sampling designs is evaluated relative
to that of the pilot design as follows:

Calculate the relative cost (RC), relative precision (RP) and
design efficiency (DE) of potential design choices, compared to
the pilot design.

RC ¼ NðdesignÞ
NðpilotÞ � 100% ð3Þ

RP ¼ precisionðdesignÞ
precisionðpilotÞ � 100% ¼ SEðpilotÞ

SEðdesignÞ � 100% ð4Þ

It is possible to have a full study design to be much better than
the pilot design in terms of the RP but worse than the pilot
design in terms of RC. Therefore, it is useful to evaluate a
design in terms of a measure that we define as design efficiency
(DE):

DE ¼ RP/RC (5)

The DE measures gain (or loss) in relative precision of a
potential design for one unit change in relative cost of that
design. This index allows us to not only evaluate a potential
design choice but also compare one design choice to another.
Thus, if DE 41, then that design is better than the pilot and
the larger the DE, the better the design is relative to the pilot
design. Further, since the pilot design is the common reference
design, we can compare designs in terms of their design
efficiencies.

3. Results and discussion

3.1 Estimates of the variance components

The statistical procedure called MIXED in Statistical Analysis
System (SAS) version 8.0 was used to fit the model shown in
eqn. (1). In order to meet the normality assumption, logarith-
mic transformation was applied to each set of measurement
data (PM2.5 and specific elements). The nested random effects
model was utilized to obtain variance components of the PM2.5

database collected in the single ambient monitoring site.
Table 1 shows the estimates of the variance components for
the site obtained for five different exposures, which includes
PM2.5 and its selected elements (elemental Fe, Pb, S, and Zn).
The week-to-week component of variation for each exposure
was either almost non-existent (PM2.5, Fe, and Pb) or very
small (S, Zn). Further, the day-to-day variation was consider-
ably larger than that of the period component (except for Pb,
where the two were approximately the same).

The pilot design for this single site included a total of 23
measurements. It is generally preferable to have a ‘‘balanced’’
design (such as three periods, two weeks of sampling for each
of the three periods, and four days of sampling for each of the
two weeks). However, a slight imbalance (such as in the present
pilot design) does not pose problems. In what follows, the
results of the variance component analysis are used to calculate
various indices of design performance defined earlier.

3.2 Relative cost (RC)

As indicated above, the cost of a design is proportional to the
total number of observations or sampling assessments (n)
performed in the study. If a study were designed with environ-
mental sampling in three periods, with two weeks per period
and three days per week [a (3–2–3) design] then there would be
18 ¼ 3 � 2 � 3 sampling assessments in this design configura-
tion. With 23 observations performed in the framework of the
pilot design, the relative cost can be calculated as follows:
RC ¼ (18/23) � 100 ¼ 78%. Similar calculations can be done
for other design choices.

3.3 Relative precision (RP)

One way to compare a proposed sampling design to the pilot
design is in terms of the relative precision:

relative precision ðRPÞ ¼ 1=ŝ�yðdesignÞ
1=ŝ�yðpilotÞ

� 100% ð6Þ

where ŝ�y(design) is calculated as square root of the estimated
variance of the mean exposure using eqn. (2). For example,
with PM2.5 as an outcome, the estimated standard error of the
sample mean of PM2.5 obtained by performing a (3–2–3) design
choice will be:

ŝ�yðdesignÞ ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:01

1

3
� 1

12

� �
þ 0:00

1

3

1

2
� 1

4

� �
þ 0:06

1

3� 2

1

3
� 1

7

� �s

¼ 0:066

Thus; RP ¼ 1=ŝ�yðproposedÞ
1=ŝ�yðpilotÞ

� 100% ¼ 0:06=0:066

¼ 95:6%:

In other words, with respect to the PM2.5, the estimated relative
precision of the proposed design will be decreased by 4.4% in
comparison to the pilot design used.

3.4 Design efficiency (DE)

On the basis of eqn. (5), DE for PM2.5 can be calculated for any
specific design using the estimates of RC and RP. For a chosen
design, we will have as many DEs’ as the number of different
outcomes considered in the study. For example, in this study,
we are looking at five different outcomes (PM2.5 and four
elements). A reasonable solution would be to obtain a total (or
average) of all the DEs’ per design choice. While in theory,
there can be a large number of design choices for a given
situation, we recommend restricting possible choices of the
number of levels for different strata to be close to the number
of levels used in the pilot design. For example, the pilot design
discussed above (Fig. 1) had three periods, three different
choices of weeks (1, 2, or 3) and three choices of days per
week (3, 4, or 5). In order to stay close to the pilot design
scenario, we will consider a total of 27 potential design choices
resulting from 3 choices for periods {2, 3, or 4}, three choices
for weeks {1, 2, or 3}, and three choices for the number of days
per week {3, 4, or 5}. Table 2 lists estimates of RC, RP, and DE
for each outcome (PM2.5 and 4 elements) as well as the sum of
the individual DEs for some design choices. We only consider
and list those designs whose relative precisions are at least
90%. This is proposed since there are designs, which have large
savings (in terms of RC) but, at the same time, are character-
ized by even larger decrease in RP, thus leading to high DE
values. The latter may often be counter-productive because the
design efficiency would occur at the expense of substantially
reduced precision, and such a full-scale study design would

Table 1 Variance component estimates for the Water Tower site

Variance

components PM2.5 Fe Pb S Zn

Period 0.01 0.06 0.29 0.04 0.05

Week (Period) 0.00 0.00 0.00 0.02 0.02

Day (Period, Week) 0.06 0.19 0.23 0.06 0.20

N 23 23 23 23 23

Mean 2.58 4.57 1.26 6.87 2.66

Std.Error 0.06 0.14 0.28 0.12 0.14
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have undesirable policy or poor applicability to health out-
comes. Thus, setting a cut-off limit for an acceptable loss in RP
is highly recommended. The designs are ranked based on total
DE in Table 2. The results show that (3–2–4) and (4–2–3) are
‘‘similar’’ to the pilot design in terms of RC and total DE.
Recall that the pilot design had 23 observations and was
somewhat ‘‘unbalanced’’. (3–2–4) and (4–2–3) designs, both
have 24 observations each and both are ‘‘balanced’’ designs.
Designs which ranked above those two are considered ‘‘better’’
than the pilot design, while those below are ‘‘worse’’ than the
pilot design. Design (4–1–3) ranks number 1. This design (i.e.,
exposure sampling in four periods, with one week per period
and three days per week) would save sampling costs by 48%,
relative to the pilot design. The relative precisions for PM2.5

and Zn would be reduced by 7%. While the RP for S will be
down by 2%, RPs for Fe and Pb show some increase. If any
loss in precision would be deemed as unacceptable, then the
(4–1–4) design can be selected, which saves approximately 30%
in sampling cost and increases precision for each outcome
relative to the pilot design. If we wish to keep the sampling
cost for the full-scale study close to the pilot design, then
(4-2-3) design may be chosen. This design provides a gain in
relative precisions of 13% to 21%. Fig. 2 graphically depicts
DEs’ for all the 27 design choices presented for each outcome.
The graphs demonstrate remarkable similarity of the designs
with respect to the DEs for the five outcomes. This further
ensures that the total DE (as the sum of the five individual
DEs, one for each outcome) provides a good index for
choosing a design for the specified outcomes measured at a
specific site. The entire process of arriving at the potential

design choices can be summarized in the following sequence of
steps:
Step 1: Conduct a pilot study with a feasible environmental

sampling design choice.
Step 2: Using a random effects model, obtain estimates of the

appropriate variance components from the pilot database.
Step 3: Identify a reasonable number of potential design

choices to be evaluated for the full-scale study.
Step 4: Using eqns. (2)–(5) along with the appropriate

quantities in them, obtain RP, RC, and DE.
Step 5: Choose an acceptable cut-off for RP (e.g.: 90%).

Discard designs with RP below the cut-off level. Then, rank-
order the other designs with respect to DE (or total DE if more
than one outcome is involved).
Step 6: Based on the study parameters, select the design

ranking among the top two or three.
We used this step-by-step approach to identify potential de-

sign choices for PM monitoring for other sites involved in our
study. As expected, the top ranking designs were not always
the same from one site to another. This variability occurred
primarily because different sites reflected differing sources of
temporal and spatial ambient exposure variations resulting in
different relative magnitudes of variance components and
thereby, arriving at somewhat different top design choices.
Instead of adopting the proposed multi-stage sub-sampling

scheme, what if the investigator decided to have a simple
random sample of the same number of observations over the
entire period of sampling? This situation is akin to one where
stratified sampling is preferred over simple random sampling.
It is well known that stratified sampling leads to increased
precision of the mean as long as the within strata (in our case
within period) variation is considerably lower than the be-
tween-strata variation. In our study, it is clear that there was a
sizeable variation between periods, almost no week-to-week
variation within a period, and again sizeable day-to-day varia-
tion within a week. Each period in the study consisted of a
month of sampling and the months were chosen to broadly
conform to the seasons. Thus, a large variation between
periods reflects large seasonal variation, which appears to be
consistent with the notion, that environmental pollutants in
ambient air such as particulate matter and its constituents
generally have considerable seasonal variation. Further a size-
able day-to-day variation may be reflecting such short-term
local conditions as daily meteorological conditions, daily traffic
intensity and industrial emissions including an interaction
between them on a daily basis. Consequently, it is reasonable
to expect that a design, which accounts for the seasonal

Table 2 Measures of relative cost, relative precision and design efficiency for some design choicesa

RP (%) DE

Design (p–w–d) N (Design) RC (%) PM2.5 Fe Pb S Zn PM2.5 Fe Pb S Zn Total Rank

4–1–3 12 52.2 93.3 102.6 114.9 98.0 93.3 1.79 1.97 2.20 1.88 1.79 9.62 1

4–1–4 16 69.6 110.5 115.0 119.9 102.6 103.8 1.59 1.65 1.72 1.47 1.49 7.93 2

4–1–5 20 87.0 126.9 125.0 123.3 105.7 112.2 1.46 1.44 1.42 1.22 1.29 6.82 3

3–2–3 18 78.3 95.6 97.3 99.1 97.5 94.1 1.22 1.24 1.27 1.25 1.20 6.18 4

4–2–3 24 104.3 113.8 117.2 120.7 117.4 112.8 1.09 1.12 1.16 1.13 1.08 5.58 5

3–2–4 24 104.3 107.0 103.9 101.2 100.4 101.0 1.03 1.00 0.97 0.96 0.97 4.92 6

4–2–4 32 139.1 128.4 125.9 123.5 121.3 121.7 0.92 0.90 0.89 0.87 0.87 4.46 7

3–3–3 27 117.4 103.9 102.2 100.7 104.7 101.7 0.88 0.87 0.86 0.89 0.87 4.37 8

3–2–5 30 130.4 116.1 108.6 102.5 102.3 105.9 0.89 0.83 0.79 0.78 0.81 4.10 9

4–3–3 36 156.5 124.4 123.6 122.8 127.0 122.6 0.80 0.79 0.78 0.81 0.78 3.96 10

4–2–5 40 173.9 140.4 132.1 125.3 123.8 128.1 0.81 0.76 0.72 0.71 0.74 3.74 11

3–3–4 36 156.5 113.3 107.2 102.1 107.1 107.3 0.72 0.68 0.65 0.68 0.69 3.43 12

4–3–4 48 208.7 136.7 130.2 124.8 130.2 130.0 0.65 0.62 0.60 0.62 0.62 3.12 13

3–3–5 45 195.7 120.3 110.5 103.0 108.6 111.1 0.61 0.56 0.53 0.56 0.57 2.83 14

4–3–5 60 260.9 146.0 134.7 126.0 132.3 135.1 0.56 0.52 0.48 0.51 0.52 2.58 15

a The designs with (RP o 90%) are not included.

Fig. 2 Design efficiency by design choices for the selected site.
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variation by creating strata for seasons (periods) to be more
precise than a simple random sample of same number of
sampling assessments. One can well imagine that a simple
random sample of days can easily fail to represent all possible
seasons and therefore underestimate the seasonal component.

In this paper, we primarily focused on obtaining efficient
designs for sampling over time. The same generic approach,
however, can readily be applied for spatial sampling. For
example, in an exposure monitoring application, we could
incorporate site-to-site variation in the random-effects model-
ing and analysis. This approach could lead to a comprehensive
sampling design, providing guidelines for both temporal as well
as spatial dimensions of environmental sampling. One such
application of our approach has been recently described with
respect to the temporal and spatial redistribution of moni-
toring stations in a large metropolitan area.12

4. Conclusion

It is often the case in environmental exposure assessment that
sites, days, etc., are not actually selected randomly from a
larger population but are what become available to the in-
vestigators at the time of the measurements. Usually it is safe to
assume their availability is the result of a process that is
sufficiently haphazard to assure that no bias is involved. If
the representativeness is in question, however, then these
measures should be used cautiously for estimation of the
population characteristics as proposed in this paper.

The methodology is primarily driven by the pilot study
results. It is implicit in the approach that the results of the
pilot study are indeed applicable to the future full-scale study.
In that, we also assume the pilot study not only captures most
of the important sources of variability but also that it is
representative of the characteristics of the full-scale study. In
addition to the temporal factors, different sampling scenarios
(be it ambient pollution assessment, water contaminant mea-
sures, sediment/soil sampling, personal exposure assessments,
etc.) require different relevant co-factors to be included in the
model. For example, we may include certain meteorological
factors such as wind-direction and wind-velocity in the model
and ‘‘parcel out’’ the variability due to such co-factors in the
exposure assessments from that due to the temporal factors.
Inclusion of such factors may or may not effect our final choice
of the optimum design. While it is true that the variability
found in the pilot study is analyzed and parameterized, our
approach to obtaining optimum designs is directly dependent
upon the relative sizes of the variance components involved
and not on their absolute magnitudes. Therefor, as long as the
co-factor’s variance component follows similar general pattern
of relative variation as the temporal factors, there will be a
minimal impact on the relative sizes of the variance compo-
nents and so a minimal impact on the choice of the optimum
design with or without such cofactors in the model. Never-
theless, it is recommended that the pilot study consider in-
corporating relevant factors (besides the temporal ones) into
the model-building phase of this methodology.

The objective of the study must be clearly delineated in
advance so that a clear model specification (both in terms of
the number of stages (strata) over time as well as number of
sampling sites plus any relevant cofactors) can be made with-
out confusion. In this paper, we are proposing a cost effective
and efficient approach to environmental sampling design that is
grounded in sound principles of survey sampling. The implica-
tions of having a design choice that is objective and data driven
and that can be applied to a large full-scale sampling study, are
far reaching. Quite often, considerable saving in costs can be
realized with little to no loss (not to mention a gain) in

precision of the estimated population quantities. These savings
are equally plausible for both environmental monitoring stu-
dies14,15–18,20,23,25 as well as epidemiological studies of research
in environmental health.13,19,21,22,24
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