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A time series model was fitted to the pollen concentration data collected in the Greater Cincinnati

area for the Cincinnati Childhood Allergy and Air Pollution Study (CCAAPS). A traditional time

series analysis and temporal variogram approach were applied to the regularly spaced databases

(collected in 2003) and irregularly spaced ones (collected in 2002), respectively. The aim was to

evaluate the effect of the sampling frequency on the sampling precision in terms of inverse of

standard error of the overall level of mean value across time. The presence of high

autocorrelation in the data was confirmed and indicated some degree of temporal redundancy in

the pollen concentration data. Therefore, it was suggested that sampling frequency could be

reduced from once a day to once every several days without a major loss of sampling precision of

the overall mean over time. Considering the trade-offs between sampling frequency and the

possibility of sampling bias increasing with larger sampling interval, we recommend that the

sampling interval should take values from 3 to 5 days for the pollen monitoring program, if the

goal is to track the long-term average.

1. Introduction

The impact on human health of some naturally occurring

ambient environmental exposures such as pollen is attracting

considerable interest of researchers. The association between

airborne pollen and allergic responses has been widely recog-

nized.1 It is necessary to measure the environmental exposure

precisely in order to understand its health effects accurately.

Usually, researchers monitor the exposure over time. Pollen

monitoring networks usually collect daily pollen samples

during the pollen season.2–4 Due to the conflict between

expanding environmental monitoring and constraints of

limited budgets, a key question is: How can we optimize a

sampling design for environmental exposure monitoring so

that limited resources are not spent on unnecessary sampling

and analysis?

Other studies have been conducted to establish cost-effective

sampling programs for exposures over time. Peretz5 fitted a

nested unbalanced analysis of variance model to estimate the

magnitude of the variability in workers’ exposure to lead,

benzene and dust over time by analyzing repeated measure-

ments over time nested in worker, nested in factory, and nested

in air contaminant. In our studies,6–8 we also employed

variance component analysis (VCA) to investigate the optimal

temporal sampling allocation for ambient particles and air-

craft maintenance workers’ exposure to solvents, primarily

1,1,1-trichloroethane. This method requires a pilot study at

first, and then variance components of season, month, week

and day can be estimated through VCA. Based on those

variance components, designs with different combinations of

numbers of season, month, week, and day can be probed to

achieve an optimal design with a specific precision in terms of

standard error of estimated mean. This method assumes,

however, that the sample collections in the pilot study should

be adequately separated temporally so that the autocorrela-

tion between adjacent samples could be ignored.

If the autocorrelation between data points that are tempo-

rally close to each other cannot be ignored, a time series

approach that incorporates the autocorrelation may be pre-

ferable for optimizing the sampling design. In actual studies,

time series data from the pilot study may be regularly spaced

or irregularly spaced. In the former case, samples are evenly

scattered over time, while in the latter case, these are not, due

to irregular monitoring or missing data points. In our on-

going Cincinnati Childhood Allergy and Air Pollution Study

(CCAAPS), pollen concentrations monitored over time in

2002 and 2003 in the Cincinnati metropolitan area show high

autocorrelation. Furthermore, the pollen concentrations in

2002 were collected very irregularly, while the data in 2003

were regularly spaced. Usually, the statistical analysis of these

two kinds of time series data presents challenges, especially for

irregularly spaced time series. The variance of the sample

mean vâr( �Y) of independent measurements can be estimated

by dividing the sample variance vâr(Y) by the number of

measurements, N. In correlated time series data, however,

the variance of the sample mean would be an underestimate

if the correlation is present.

For regularly spaced time series, the ‘‘effectively’’ indepen-

dent sample size, Neff, was introduced for estimating the

variance of sample mean in a paper by Somerville and Evans.9
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Neff reflects the ‘‘effective’’ degrees of freedom for the data,

which can never exceed N. The higher autocorrelation leads to

the smaller Neff. The estimated sample variance can be divided

by Neff to estimate the variance of sample mean over time. In

Somerville and Evans’s paper, the first order autoregressive

structure, AR(1), was applied to estimate Neff in a survey study

of atmospheric fine mass; subsequently, the standard error of

the mean was computed. However, the AR(1) correlation

structure is not suitable for our pollen data collected in

2003, since the preliminary analysis shows that the

ARMA(1,1) accounts for the data pattern better than

AR(1). So, we extended the method and used ARMA(1,1),

which seems more appropriate for assessing the autocorrela-

tion pattern existing in the pollen concentrations over time.

Since the pollen concentration database collected in 2002

was irregularly spaced, standard time series approach is not

appropriate. Instead, variogram analysis that is extensively

utilized in geostatistics to evaluate spatial correlation can be

successfully used here. Variogram may also be applied to

irregularly spaced time series, since the information of tem-

poral distances can be evaluated. There are several examples of

applying variogram to sampling issues. Cameron and Hun-

ter10 developed a spatial and temporal algorithm (geostatis-

tical temporal–spatial or GTS) to optimize long-term ground

water monitoring networks through analyzing spatial and

temporal variograms. Temporal redundancy was supposed

to be reduced by lengthening the time between sample collec-

tions. Lwin11 applied variogram analysis to sampling issues

from continuous streams in mineral processing, where sam-

pling units are increments of a volume or mass of specific

mineral particles. Lwin developed a weighted sample mean to

cope with irregularly spaced sampling intervals and then

assessed the magnitude of sampling variation.

In the present paper, the pollen concentrations from the

CCAAPS project were treated as pilot data. We assessed

alternative designs with different sampling frequencies (in

terms of inverse of sampling interval) with respect to the cost

of sampling (in terms of the numbers of samples) and precision

(in terms of the inverse of the standard error of the mean level

of exposure over time). In an attempt to reduce the sampling

frequency over time, we applied the modified time series

analysis and variogram approach to pollen concentrations

measured in 2003 and 2002 in CCAAPS, respectively.

2. Methods

2.1 Pollen concentration data

The primary goal of CCAAPS is to investigate if exposures to

diesel exhaust particles (DEP) play a role in allergy and

asthma in infants and young children. Because DEP may act

as a confounder with allergens, this study required monitoring

the ambient pollen concentrations over time. Pollen grains

were collected with the button inhalable aerosol sampler daily

from March 5 to the end of September in 2002 (Fig. 1) at two

sites (Grooms and Taft) and from March 4 to November 25 in

2003 (Fig. 2) at Taft alone. The site of Grooms is located 12

miles north of downtown Cincinnati, while Taft is about three

miles north of the downtown Cincinnati. At Grooms, the

button sampler was installed on a wooden pole at the height

of 3 m, whereas at Taft, the sampler located on the rooftop of

a two-storied office building with the height of 7 m. At both

sites, 24 hour air samples were collected with the inlet of the

button sampler oriented towards the south-west, which is

the predominant wind direction in Greater Cincinnati.12

There were no tall buildings in the proximity to allow

free air movement. After collection, pollens were counted

under a microscope, and the counts were transformed into

concentrations (pollen grains m�3) by specific formulas.

Sampling and analysis methods were described in detail by

Adhikari et al.12,13

2.2 Statistical modeling and analyses

Time series analysis is a technique developed to analyze

changes in a variable over time as an attempt to find patterns

and relationships in the data. Data collected over time are

usually auto-correlated (serially correlated), indicating that

data points closer to each other often have higher correla-

tion.14

For the pollen concentrations in 2002 and 2003, the data

showed in Fig. 1 and Fig. 2 have periodical pattern, and it is

usually assumed that the pollen concentration has a log-

normal distribution. Thus, we assume the logarithmic trans-

formed pollen concentration at time t denoted by Yt,

t = 1,. . .,n. to have the following model:

Yt = m + b1t + b2 sin(2ptn) + b3 cos(2ptn) + et (1)

Where t is the temporal distance (in days) from the first

sampling date, m + b1t accounts for the linear trend, sin and

cos terms represent the seasonal periodicity, et is the error

term, m, b2 and b3 are regression parameters, and n denotes the
periodicity parameter.

2.2.1. Regularly spaced time series technique

2.2.1.1 Variance of overall mean over time in pilot design.

For the pollen concentrations in 2003, we assume the error

term et has an ARMA(1,1) structure. It means et = fet�1 +
et � yet�1, et B NID(0, s2). ARMA(1,1) is the mixture of the

first-order autoregressive, AR(1), and the first-order

moving average process, MA(1). The values of f and y are

the autoregressive and moving average parameters,

respectively, which measure the association between Yt and

Yt�1 after adjusting the seasonal cycle and linear trend.

The autocorrelation in terms of parameters of f and y is

given by

ri ¼ ðf� yÞð1� fyÞ=ð1þ y2 � 2fyÞ; i ¼ 1
ri ¼ fri�1; i � 2;

�
ð2Þ

where ri represents the lag-i autocorrelation coefficient.

Our interest is to estimate the variance of overall

sample mean denoted by var( �Y). Due to varð �YÞ ¼
s2f½nþ 2

Pn
i¼1 ðn� 1Þri�=n2g,15 we express var( �Y) and effec-

tive independent sample size, neff , for the data with

ARMA(1,1) correlation structure as

varðYÞ ¼ s2 nþ 2r1
ð1�fÞ2 ½nð1� fÞ � ð1� fnÞ�

n o
=n2

neff ¼ n2= nþ 2r1
ð1�fÞ2 ½nð1� fÞ � ð1� fnÞ�

n o
8<
: ð3Þ
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SAS/ETS is a component of the SAS system (SAS, 9.1). It

includes SAS procedures for econometric analysis and time

series analysis, The MODEL procedure in SAS/ETS analyzes

models in which the relationships among the variables com-

prise a system of one or more nonlinear equations and the

error term can be a time series process. Therefore, PROC

MODEL is appropriate to fit the model in eqn (1) and estimate

the parameters (m, b1, b2, b3, n, f, y and s2).

2.2.1.2 Cost and precision for potential designs. Based on the

parameter estimates from the pilot study, we calculate the

variance of the mean value for a potential design with specific

sampling frequency (i.e. pollen concentrations monitored once

every k days). The variance var( �Yk) can be estimated by

vârð �YkÞ ¼
ŝ2

n2k
n2k þ 2

Xnk
i¼1
ðnk � iÞr�i

" #
ð4Þ

where r�1 ¼
ðf�yÞð1�fyÞ
ð1þy2�2fyÞ f

k�1; r�i ¼ fk�1r�
i�1
; i � 2; nk = n/k

denotes the number of the samples monitored over time in

this potential design.

Since, the precision in the estimate of the overall mean is

defined as the inverse of the standard error of the overall

mean, and since the sampling cost is directly proportional to

the total number of samples monitored, we obtained the

relative cost (RC) and relative precision (RP) of any specific

potential design with sampling scenario of one measurement

for every k days vis à vis the pilot design.

RC ¼ number of samplesðdesignÞ
number of samplesðpilotÞ � 100% ¼ nk

n
� 100%

RP ¼ precisionðdesignÞ
precisionðpilotÞ � 100% ¼ SEðpilotÞ

SEðdesignÞ � 100% ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
varð �YÞ
varð �YkÞ

q
�100%

8><
>:

ð5Þ

2.2.2. Temporal variogram for irregularly-spaced time

series

2.2.2.1 Temporal variogram. A variogram is a function used

in geostatistics for describing the spatial or temporal correla-

tion among observations. It is directly related to the co-

variance function. The variogram is important as it is used

to fit a model of the spatial/temporal correlation in any

observed phenomenon. In geostatistics, the variogram16–20 is

defined as a measure of the continuity of spatial phenomena

expressed as half the variance of the difference between

measured quantities at different locations x and x + h. If

Z(x) is denoted as a measured quantity at location x, the

mathematical definition of the variogram is

rðhÞ ¼ 1
2
varfZðxþ hÞ � ZðxÞg

rðhÞ ¼ 1
2
E½fZðxþ hÞ � ZðxÞg2� whenEfZðxþ hÞ � ZðxÞg

¼ 0

8<
:

ð6Þ

In variogram analysis, Z(x) is assumed to be second-order

stationary, which means it satisfies two conditions simulta-

neously. Firstly, E{Z(x)} exists and does not depend on

location x. It means E{Z(x)} = m, for all x. Secondly, for

each pair of quantities, {Z(x), Z(x+ h)}, the covariance exists

and depends only on the separation vector h. The stationarity

of the covariance implies the stationarity of the variance. It

means var{Z(x)} = s2, for all x.
The variogram may also be applied to dealing with irregu-

larly spaced time series in time domain. Let measurement at

time ti be denoted by Yti
, (i = 1,2,. . .,n) having a distribution

with E(Yti
) = m and var(Yti

) = s2. Define temporal variogram

as rh ¼ 1
2
E½fYti � Ytjg

2�, where h = ti � tj is the distance in

time between two measurements. The variogram is estimated

by the average of observed half-squared-differences between

pairs of measurements corresponding to that particular

distance class h.

Variogram analysis consists of the experimental variogram

calculated from the data and the variogram model fitted to the

data. The variogram model is chosen from a set of mathema-

tical functions that describe spatial relationships. The appro-

priate model is chosen by matching the shape of the curve of

the experimental variogram to the shape of the curve of the

mathematical function.

2.2.2.2 Variance of weighted overall mean over time in pilot

study. For the pollen concentrations in 2002, since the time

series at Grooms and Taft are very irregularly spaced, the

traditional regularly spaced time series approach is not applic-

able, where the commonly used variogram analysis is appro-

priate. In traditional variogram analysis, the spatial

autocorrelation takes the distance between points in space

Fig. 1 Pollen concentration over time in 2002 by site.

Fig. 2 Pollen concentration over time in 2003 at Taft.
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into account. Similarly, variogram analysis can be employed

on irregularly spaced time series data dealing with the tempor-

al autocorrelation and considering the temporal distance

between samples collected over time. We call the variogram

analysis for the data in the time domain ‘temporal variogram

analysis’.

We fit the model presented above by eqn (1) and call the first

part, m + b1t + b2 sin(2ptn) + b3 cos(2ptn), a drift. Then, the

variogram that measures the temporal autocorrelation is

estimated on the error item et, so it is called a residual

variogram. In other words, the residual variogram is drift-

adjusted variogram. It is unnecessary to assume that the error

item et has any correlation pattern such as ARMA(1,1), but it

should be stationary, which means the expectation and var-

iance of et are constant over time. The residual variogram is

defined as rh ¼ 1
2
E½feti � etjg

2�; h = |ti � tj| is the temporal

distance between two samples. The sample version of rh (called

a sample residual variogram or experimental residual vario-

gram) is estimated as follows:

r̂h ¼
1

2nh

X
i;j:jðtj�tiÞ�hj�d

ðetj � eti Þ
2; for all i; j : ðtj � tiÞ ð7Þ

The VARIOGRAM function in the R package is employed to

obtain the sample residual variogram. The R package, similar

to S-plus, is a language and computing environment for

statistical analyses and graphics. The R package is available

as free standing software under the terms of the Free Software

Foundation’s GNU General Public License in source code

form.

Theoretically, rh is directly related to the autocorrelation

function rh

rh ¼
0; h ¼ 0

s2½1� rh�; h 6¼ 0

�
ð8Þ

where rh represents lag-h autocorrelation coefficient

The residual variogram at h = 0 is by definition 0. It often

occurs, however, that the residual variogram of et cannot be
represented by a completely continuous function since its

value at h = 0 may not be lower than a positive quantity s20.
The phenomenon appears often in geological and environ-

mental sampling and is called the nugget effect or nugget

variance. Any apparent nugget variance usually arises from

measurement errors or variation within the shortest sampling

interval.18 Thus, a realistic rh is represented by

rh ¼
s20; h ¼ 0

s20 þ s2½1� rh�; h 6¼ 0

�
ð9Þ

With the sample residual variogram in hand, we estimate ŝ20
and ŝ2 in eqn (9) by modeling rh. In general, three types of

models are used widely: linear, spherical, and exponential.

They are defined as follows, respectively:

� Linear: rh ¼
s20 þ s2h=b; h � b
s20 þ s2; h4b

�

� Spherical: rh ¼
s20 þ s2 1:5 h

b
� 0:5 h

b

� �3h i
; h � b

s20 þ s2; h4b

(
ð10Þ

� Exponential: rh = s20 + s2 [1 � exp(�h/b)]

The estimator of nugget effect ŝ20 is the intercept at h = 0, and

ŝ20 + ŝ2 is the sill of the fitted curve. The sill exists on the curve

because the autocorrelation coefficient rh - 0 when temporal

distance between pairs of samples is beyond b (i.e., b serves as

the range).

The next step is to estimate the variance of the overall mean

for the irregularly spaced time series in the pilot study. Lwin11

showed that a weighted mean �Yw gave more reasonable

information than the algorithm mean �Y about the average

value in an irregularly spaced time series data. Thus, we need

to estimate var( �Yw). We define

�Yw =
P

wi Yti, i = 1, . . ., n. (11)

where w1 = Dt2/(2T); wi = (Dti+1 + Dti)/(2T), i= 2,. . .,n � 1;

wn = Dtn/(2T); Dti = ti � ti�1 denotes the temporal distance of

two consecutive samples; and T = tn � t1.

Suppose the nugget effect comes from the measurement

errors, thus the variance of �Yw is given by

varð �YwÞ ¼
Xn
i¼1

varðwiYti Þ þ 2
Xn�1
i¼1

Xn
j¼iþ1

wiwj covðYti ;Ytj Þ

¼
Xn
i¼1

w2
i

 !
ðs20 þ s2Þ þ 2

Xn�1
i¼1

Xn
j¼iþ1

wiwjðs20 þ s2 � rðtj�tiÞÞ

¼s20 þ s2 � 2
Xn�1
i¼1

Xn
j¼iþ1

wiwjrðtj�tiÞ

ð12Þ

2.2.2.3 Cost and precision for potential designs. For the

design with sampling interval equal to k days, r̂h can be

computed by eqn (9), using ŝ20, ŝ2, and r̂h from the fitted

model in eqn (10). Thus, the variance of the overall mean

var( �Yk) for the potential design can be estimated by applying

ŝ20, ŝ
2 and r̂h, to the following formula:

vârð �YkÞ ¼
ŝ20 þ ŝ2

n2k
nk þ 2

Xnk
i¼1
ðnk � iÞr�i

" #
ð13Þ

where ri* = r̂k*i denotes the autocorrelation between

measures with k*i days lag, and nk is the sample size of the

specific design. The relative cost and relative precision can be

calculated in the same way as described in Section 2.2.1.2, after

obtaining var( �Yk).

3. Results

3.1 Time series approach for regularly-spaced observations

Fig. 3 presents a plot of the predicted values from the fitted

model versus the observed log-transformed pollen
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concentrations. It shows that the model accounts for most of

the data pattern and its periodicity. The plots of residuals from

the fitted model versus the predicted values and residuals

versus the time did not indicate heterogeneity of variance.

Table 1 shows the estimates of model parameters. The estimate

of y is 0.23 (with the P value = 0.06), which confirms that the

ARMA(1,1) correlation structure is more reasonable for the

data than AR(1). The adjusted R2 (0.73) also suggests that the

fitted model accounted for most of the trend and variation

among the pollen concentrations in 2003. Negative estimates

of linear coefficient b1 (�0.02, p o 0.001) and coefficient b3
(�0.59, p = 0.03) show that the pollen concentrations of 2003

have some linear decreasing trend with time and displayed

periodicity.

Table 2 lists the variances of estimates of overall mean for

the pilot design and other potential designs with sampling

interval equal to k, k = 1, . . ., 10 days. Those variances were

calculated using eqn (3) and (4). The relative costs and relative

precisions were obtained in terms of number of samples and

the inverse of the standard error of the overall mean, respec-

tively. Due to high autocorrelation (f = 0.91) in the data,

relative precisions are still very high for those potential de-

signs. For instance, if we monitor the pollen concentrations

once every 3 days, the estimate of the overall mean would still

have 99.4% precision compared to the daily monitoring

program (pilot design). If monitoring is done every 10 days

the precision is 93.7% while the cost is 90% less.

Due to the large value of the autocorrelation parameter

(e.g., f= 0.91 in pollen data for 2003), we can still obtain very

high precision for the estimate of sample mean even though

the sampling frequency reduces to one data point per 10 days.

It is possible, however, that, the bias may become serious in

reduced samples, since it usually exists in systematic sampling

strategies. In order to check bias in our study, we calculated

sample means with different sampling frequencies based on the

log-transformed pollen concentrations obtained in 2003. We

also computed the sample means with different starting points

within a selected sampling interval. For example, if the

sampling interval was 3 days, we may use the first, second or

third date (i.e. 3/5/2003, 3/6/2003, or 3/7/2003) as the starting

point. Table 3 shows the sample means with different starting

points within different sampling intervals. Daily sampling

(with sample mean equal to 3.04) represents the conditions

implemented in our pilot study. Results show that sampling

with every other day provides very close sample means to that

of a daily sampling scenario. With the sampling interval

increasing, the bias of the sample mean also rapidly increases.

In order to control the bias, we recommend the sampling

interval should be less than 5 days.

3.2 Temporal variogram approach for irregularly-spaced

observations

The pollen concentrations were not regularly monitored at the

Grooms and Taft locations from 5th March 2002 to 30th

September 2002. The samples were collected for 125 out of 210

days at Grooms, 117 out of 210 days at Taft. Obviously, the

two time series are irregularly spaced, so temporal variogram

analysis was applied to these data. We also fitted the model

given in eqn (1), and then estimated sample residual variogram

from the fitted model.

The function of VARIOGRAM in the library of Gstat of

the R package was used to estimate the sample residual

variograms. Subsequently, we used functions of FIT.VARIO-

GRAM and VGM to model the sample residual variograms.

Three models (spherical, exponential, and linear) were selected

after checking the curve patterns of the sample residual

variograms. The estimates of parameters for each of the three

models are shown in Table 4 and the corresponding graphs are

plotted in Fig. 4.

Using the estimates of ŝ20, ŝ
2, and b̂, r̂h, was calculated for

different h values. Then vâr( �Yw) was calculated for the pilot

design by using eqn (12), and vâr( �Yk) was determined for

potential designs (sampling interval equal to k days) by

implementing eqn (13), respectively. The relative costs and

relative precisions of potential designs were obtained as com-

pared to the pilot design (see Table 5). In the pilot study, we

irregularly monitored pollen concentrations on 125 days from

March to November of 2002 at the site of Grooms and 117

days at Taft. At Grooms, if daily concentrations were col-

lected, the precision (in terms of the inverse of standard error)

of the estimate of the overall mean increased by 2.3% assum-

ing the residual variogram follows spherical model; the cost,

however, increased by 67.2%, compared to the pilot design. If

Fig. 3 Model predicted and observed pollen concentrations in 2003.

Table 1 Estimates of the parameters in the model for pollen concentrations in 2003

Parametera m b1 b2 b3 n f y s2

Estimate 5.4 �0.02 �0.21 �0.59 0.03 0.91 0.23 1.31
P value o0.0001 o0.0001 0.637 0.027 o0.0001 o0.0001 0.06 —

a Parameters in the model given in eqn (1), where m = intercept; b = regression parameters; n = the periodical parameter; f = autoregressive

parameter; y = moving average parameter; s2 = the scale of the noise of the time series.

This journal is �c The Royal Society of Chemistry 2006 J. Environ. Monit., 2006, 8, 955–962 | 959



one sample was collected every three days, the cost decreases

by 45% with a loss of only 0.8% in precision (again, assuming

the spherical model for residual variogram). Similar calcula-

tions were applied to other designs and variogram models as

presented in Table 5. The results indicate that there is no large

difference between models with respect to sampling precision.

Similar to the results of the data analysis of the pollen

concentrations measured in 2003, temporal variogram

analysis to the data collected in 2002 revealed that the relative

sampling precision was still very high even if the sampling

interval increases to 5–10 days. Therefore, unnecessary

samples largely exist in the pilot study due to the high

autocorrelation.

4. Discussion and conclusion

In survey sampling theory, fixed-interval samples (e.g., those

taken every k days) are called systematic samples. A systematic

sample includes one of the first k units (days in our study)

chosen at random, and every unit at intervals of k after the

first. Each of the k possible samples is a cluster of units

covering the population. Systematic sampling is often used

in monitoring programs because it is easy to apply. This study

managed to obtain an optimal systematic sampling strategy

through applying the time series analysis and the temporal

variogram approach to autocorrelated data. The results re-

ported here have important implications for planning sam-

pling networks for ambient exposures. As frequency of

sampling in systematic sampling increases, more redundancy

exists because of the autocorrelation. Increasing the time

interval between sampling reduces temporal redundancy. In

order to obtain optimal sampling frequency while balancing

cost and precision, a time series analysis from a pilot study is

needed in order to apply the information obtained from a pilot

study to potential designs. The present study utilized two

different methods (traditional time series analysis and tempor-

al variogram approach) for pollen concentration data col-

lected during 2003 and 2002 monitoring. We have extended

the method used by Somerville and Evans9 and selected

ARMA(1,1) to represent the autocorrelation structure for

the 2003 pollen concentration database after taking season-

ality into account. To the best of our knowledge, no previous

study has employed correlation structures such as ARMA

(p, q) (p Z 2, q Z 2) to investigate the issue of sampling

frequency. This is partly because of the difficult algorithms of

calculating variance of overall mean over time with complex

correlation structures. In time series analysis, the data should

be second order stationary (constant expectation and un-

changed variance over time), which is a challenging assump-

tion. For instance, since the log-transformed 2003 pollen

concentration data of this study exhibited seasonal periodicity,

a technique removing the trend was used by fitting a specific

model to ensure that the residual from the model is a sta-

tionary time series. This technique, however, requires satisfied

assumption of variance. Other techniques can cope with the

time series with heterogeneity of variance. For example,

Belmonte and Canela21 developed two satisfactory methods,

a Gaussian mixture model (parametric) and the Friedman

super smoother (non-parametric), for fitting a smooth trend to

annual series of mean daily concentration of Urticaceae

pollen, in which the deviations are non-stationary, at six

sampling sites. Those methods are useful for time series data

for forecasting and extracting signals, but these methods may

be difficult to implement in sampling frequency analysis.

Analysis of irregularly spaced data sets is more complicated

than that of regularly spaced ones. Our investigation used a

temporal variogram approach to explore directly the charac-

teristic of autocorrelation for irregularly spaced time series

data (i.e. pollen concentrations monitored in 2002). Other

analytic approaches can be applied to these data. For instance,

one might consider using regularization techniques to make a

Table 4 Estimates of the parameters of variogram models

Grooms Taft

Parameters Spherical Exponential Linear Spherical Exponential Linear

Nugget effect ŝ20 0.88 0.79 0.92 0.72 0.42 0.58
Variance ŝ2 2.17 2.54 2.19 2.42 2.96 2.65
Range b̂ 22.52 13.77 20.15 24.13 14.22 22.30

Table 2 Relative precisions for designs with various sampling inter-
vals (2003)

ka/day Nk
b Neff

c var(�Y)
Relative
cost (%)

Relative
precision (%)

1 (pilot) 267 14.0 0.0928 100.0 100.0
2 133 13.9 0.0937 50.0 99.5
3 89 13.8 0.094 33.3 99.4
4 66 13.6 0.0959 25.0 98.4
5 53 13.5 0.0966 20.0 98.0
6 44 13.3 0.0981 16.7 97.3
7 38 13.2 0.0987 14.3 97.0
8 33 12.9 0.1008 12.5 95.9
9 29 12.6 0.1035 11.1 94.7
10 26 12.3 0.1057 10.0 93.7

a Sampling interval. b Sample size for design with sampling interval

k. c Effective independent sample size with sampling interval k.

Table 3 Sample means of log-transformed pollen concentrations
(2003) determined for different sampling intervals

Starting point

Sampling interval (k) 1 2 3 4 5

1 3.04
2 3.04 3.05
3 3.09 3.03 3.01
4 3.07 3.13 3.01 2.96
5 2.75 2.96 3.25 3.05 3.22
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given irregularly sampled data series onto a regular grid, in

order to use conventional tools for further analysis. The

techniques require some form of interpolation or estimation

(e.g., linear interpolation and smooth interpolation), which

effectively constructs an ‘‘underlying’’ continuous function

representing the discrete data. The goal is to use an interpola-

tion/estimation method, which preserves the relevant informa-

tion as much as possible. After interpolation, traditional time

series approaches can be used on the regularly spaced time

series data. We, however, employed a temporal variogram

approach directly with 2002 pollen concentrations data with-

out interpolation, since almost half of the data points were

missing. In temporal variogram analysis, it is important to

select variogram models. Unfortunately, there are no effective

model selection criteria. Instead, one selects models based on

the curve of sample variogram. Models frequently used in

literature include linear, spherical, exponential, circular, Gaus-

sian, logarithmic, spline. We tried three types of models

(linear, spherical and exponential) in the present paper and

found no large differences between them with respect to

sampling precision.

In this study, the precision is expressed as the inverse of

standard error of the estimate of overall mean across time.

This index is easy to apply and was also used in our previous

studies.6–8 Some other investigations (e.g.: in Cameron and

Hunter’s paper10) employed the kriging technique, which

evaluates average kriging variance to optimize sampling pro-

gram and has been frequently applied to spatial data.

We found from the pollen concentration data collected in

2002 and 2003 that relative precision exceeded 95% with a 5

day sampling interval in each scenario. It means large cost

savings can be realized with a slight loss of precision. Further-

more, the relative precision remains rather high even if sam-

pling frequency is decreased to once every 10 days. However,

the bias for various sampling frequencies (Table 3) increased

markedly when sampling interval was above 5 days. We

recommend the future pollen sampling program may choose

the sampling frequency between ‘‘once in 3 days’’ and ‘‘once in

5 days’’. This allows one to perform the field sampling in a

cost-efficient way.

In our study, we assume that the relationships found in the

pollen concentration data from the pilot study would reflect

the characteristics of the data in future sampling. This assump-

tion may however, need to be verified since there may be other

factors changing over time that can affect the periodicity and

autocorrelation in the data. If autocorrelation decreases to

some lower values, reducing sampling frequency too much

may lead to an imprecise estimate of the overall mean.

The application of this approach is most suitable to estimat-

ing the long-term mean for some ambient exposures of inter-

est. They may reflect exposures in a particular season or may

reflect exposures on an annual basis. The present approach

can be used to make sampling plan to detect trends in overall

mean levels of exposure to aeroallergens (or any particular

allergen) over time. The approach described here is not

restricted to exposures to airborne pollen only. For instance,

Somerville and Evans9 successfully used time series analysis in

assessing the effect of sampling frequency on detecting trends

in the mass concentration of atmospheric fine particles. In

situations, however, when one is directly studying the health

effects of susceptible individuals due to short-term sporadic

high exposures to certain allergens, further research and

Table 5 Relative precisions for designs with various sampling intervals (2002)

Spherical Exponential Linear

Site Kb Nk
c

Relative
cost (%)

Variance of
overall
meana

Relative
precision (%)

Variance of
overall meana

Relative
precision (%)

Variance of
overall meana

Relative
precision (%)

Grooms Pilot 125 100 0.183 100.0 0.325 100.0 0.217 100.0
1 209 167.2 0.175 102.3 0.317 101.3 0.209 101.9
2 104 83.2 0.18 100.8 0.322 100.5 0.214 100.7
3 69 55.2 0.186 99.2 0.328 99.5 0.221 99.1
4 52 41.6 0.19 98.1 0.332 98.9 0.224 98.4
5 41 32.8 0.198 96.1 0.342 97.5 0.231 96.9
6 34 27.2 0.205 94.5 0.349 96.5 0.241 94.9
7 29 23.2 0.212 92.9 0.356 95.5 0.245 94.1
8 26 20.8 0.213 92.7 0.354 95.8 0.249 93.4
9 23 18.4 0.22 91.2 0.363 94.6 0.255 92.2
10 20 16 0.234 88.4 0.381 92.4 0.262 91.0

Taft Pilot 117 100.0 0.212a 100.0 0.382a 100.0 0.28a 100.0
1 210 179.5 0.206 101.4 0.376 100.8 0.274 101.1
2 105 89.7 0.21 100.5 0.378 100.5 0.277 100.5
3 70 59.8 0.214 99.5 0.381 100.1 0.281 99.8
4 52 44.4 0.22 98.2 0.388 99.2 0.287 98.8
5 42 35.9 0.223 97.5 0.388 99.2 0.289 98.4
6 35 29.9 0.227 96.6 0.392 98.7 0.292 97.9
7 30 25.6 0.232 95.6 0.396 98.2 0.295 97.4
8 26 22.2 0.24 94.0 0.405 97.1 0.303 96.1
9 23 19.7 0.247 92.6 0.411 96.4 0.312 94.7
10 21 17.9 0.249 92.3 0.411 96.4 0.31 95.0

a Var( �Yk) for design with sampling interval k; var( �Yw) for the pilot design. b Sampling interval. c Sample size with sampling interval k.
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modifications would be needed to optimize sampling strategies

for estimating short-term means.

The methodology presented here is primarily driven by the

results of the pilot study. It is implicit in the approach that the

results of the pilot study are indeed applicable to the subse-

quent full-scale study. For any future monitoring studies of a

similar nature, where the goal is to monitor long term averages

and not the daily fluctuations in exposures, we recommend

that analyses presented in this paper can and should be done

on a pilot study before the full-scale implementation of the

chosen sampling plan.
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